
Prof. T.J. Kippenberg
Fall Semester 2020

Quantum Electrodynamics and Quantum Optics
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)

Final Exam

Exam duration: 180 minutes

This is a take home written exam. Please don’t look at any reference material (including exercises,
books, lecture videos). Any form of collaboration between students is forbidden.

1. Part A (3pt/problem) - short questions
Please answer the following questions in brief and explain the concepts. (Estimated time: 90
min)

1. Coherent and squeezed states are called minimum uncertainty states. What does this mean?

2. What is the wavefunction |ψ(~r)|2 of the coherent light field confined between two equally
highly reflective mirrors? Describe it qualitatively.

3. For computing the state evolution of a quantum state, one could use either of Schrödinger
or Heisenberg pictures. Describe the difference between these two pictures. Find the trans-
formation of the creation â and annihilation â† operators under the squeezing operator
Ŝ(ε) = eεâ†2−ε∗ â2

, where ε is a complex number. You may use the Baker-Campbell-Hausdorff
(BCH) lemma:

esÂB̂e−sÂ = B̂ + s[Â, B̂] +
s2

2!
[Â, [Â, B̂]] + ...

4. Write down the expression for the second order intensity auto-correlation g(2)(τ), then de-
scribe how g(2)(0) can be used to distinguish classical and non-classical states. Give an
example for a classical and non-classical state and specify their g(2)(0).

5. Briefly explain the macroscopic quantum model for superconductivity. Write down the def-
inition of Josephson junction phase operator and show its effect when acting on a number
state.

6. Sketch the energy level diagram of a two-level system resonantly coupled to a cavity and
describe it using the system’s Hamiltonian.

7. For the Rabi oscillation, described by the semi-classical model, describe qualitatively how
does the time evolution of the population of the excited state depend on the light-atom
detuning. Sketch graphs and assume that the atom is initially in its ground state.

8. Explain on why one needs to quantize the light field in order to explain the spontaneous
emission.

9. Describe the concept of Quantum Non-demolition Measurements (QND).
Interaction of an atom dispersively coupled to a cavity is effectively described by the Hamil-
tonian Ĥint = h̄ g2

∆ σ̂z â† â. How can this system be used to perform a double QND measure-
ments on both the state of the electromagnetic field inside the cavity and quantum state of
the atom.
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2. Part B (8pt/problem)
Please pick 3 questions out of the following 4 and solve the corresponding exercises. In case
you answer all 4 questions (completely or partially), only the first 3 will be graded. (Estimated
time: 90 min)

Problem 1

Consider an ideal 50:50 beam-splitter (a, b are input ports and c, d are output ports).

1. Write down the scattering matrix of the system.

2. Assume the input to be a single indistinguishable photon entering at each port, |Ψin〉 =
|1a, 1b〉. Calculate the output state |Ψout〉, and interpret the result.

Now imagine a similar system as mentioned above, but for electrons. Unlike photons, electrons
have the Fermionic nature and obey Fermionic algebra describing by anti-commutators ({Â, B̂} =
ÂB̂ + B̂Â):

{âα, âβ} = 0 , {âα, â†
β} = δα,β

Where âα is annihilation operator of mode α.

(c) Consider the input to be a single indistinguishable electron at each port, |Ψin〉 = |1a, 1b〉.
Calculate the output state |Ψout〉, and interpret the result.

Problem 2

An arbitrary state |Ψ〉 can be projected onto the position or momentum basis states |x〉 and |p〉
to obtain position- or momentum-state wave functions ψ(x) = 〈x|Ψ〉 and ψ(p) = 〈p|Ψ〉. These
wave functions are related to each other through a Fourier transform relation:

ψ(p) =
∫ dx√

2πh̄
e−ipx/h̄ψ(x),

where |ψ(x)|2 and |ψ(p)|2 represent the probability distribution functions for position and mo-
mentum.

1. Explain why Wigner function W(x, p), as a quasi-probability distribution of position and
momentum, does not represent the actual probability of finding the state in (x, p).

2. Prove that one can obtain the probability distribution functions for position and momentum
(|ψ(x)|2 and |ψ(p)|2) from the Wigner function of a pure state:

W(x, p) =
∫ du

2πh̄
e−ipu/h̄ψ∗

(
x− u

2

)
ψ
(

x +
u
2

)
.

3. Calculate the Wigner function For a momentum state

ψ(x) =
e−ipx/h̄
√

2πh̄
,

and from the Wigner function, calculate the momentum distribution function ψ(p) and in-
terpret the result.
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Problem 3

The name ’Transmon qubit’ is an abbreviation of the term transmission line shunted plasma os-
cillation qubit. It is closely related to a Cooper-pair box, while operating in a regime where
EJ/EC � 1. The Hamiltonian of a transmon qubit is

H = 4ECn̂2 − EJ cos ϕ̂,

where n̂ = −i
(

EJ
8EC

)1/4
1√
2

(
â− â†) and ϕ̂ =

(
2EC
EJ

)1/4 (
â + â†) is the conjugate pair of position

and momentum, EC = e2

2CΣ
is the Coulomb charging energy corresponding to one electron on the

total junction capacitance CΣ, and EJ is the Josephson energy.

(a) Expand for small ϕ̂ and show the Hamiltonian to the lowest order is Ĥ0 ≈
√

8EJEC(â† â +
1/2). Therefore, under the lowest level of approximation, energy levels are equally spaced
and anharmonicity is absent.

(b) Now we apply perturbation theory to calculate the anharmonicity defined as η ≡ (E21 −
E10)/h̄. Expand cos δ̂ up to the fourth order of ϕ̂ in the Hamiltonian, derive the corrected
energy level for transmon qubit. (in terms of EC, EJ , and state index m)

(c) Define relative anharmonicity ηr as ηr ≡ h̄η/E10. Show how ηr scales with EJ/EC as EJ/EC �
1.

Figure 1: Circuit diagram of the transmon qubit.

Problem 4

The equivalent and simplified model of a gravitational wave detector is a cavity with one free
mirror. The free mirror can be coupled to the gravitational waves and the motion of this mirror
can be precisely measured via the cavity, which gives us the information about the gravitational
waves. Here we are assuming the interaction picture and only work with the interaction part of
the Hamiltonian:

Ĥint = −h̄g0 â† âx̂

where g0 is the coupling strength and is a real number.

1. Assume that a strong coherent laser drive, at the frequency ωL, is applied to the system. In
the interaction picture, expand the Hamiltonian around the average coherent values of the
operators e.g. â = α + δâ and x̂ = x̄ + δx̂, keeping up to quadratic terms of δâ and δx̂.

2. Using the linearized Hamiltonian, write down the equations of motion (Quantum Langevin
Equation - QLE) for phase Ŷ and amplitude X̂ quadrature of the cavity field and the mirror
position fluctuations δx̂. (Cavity field quadratures are defined as X̂ = δâ+δâ†

√
2

and Ŷ = δâ−δâ†

i
√

2
)
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3. Using the set of QLE that you calculated, find out which quadrature has the information
about the mirror’s position.
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